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Outline

• Experimental	Background

• Why	QED-NRQED?

• One	photon	exchange	at	power	m2/M2

• Two	photon	exchange	at	leading	power

• Future	endeavors
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Spectroscopy

• Measure	Lamb	shift

• Difference	between	2S1/2 and	2P1/2 energy	states
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Textbook	Example

• Assume	the	charge	density	ρ is	spherically	symmetric

• For	small	q
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• From	Gauss’s	Law

• Potential	can	be	expanded	to	be

• From	perturbation	theory
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• Muon is	~200	times	more	massive	then	the	electron

• Effect	is	~2003 times	larger

• Smaller	error	for	the	radius

• Muonic Hydrogen:	r =	0.84087(39)	fm

• Atomic	Hydrogen:	r =	0.8758(77)	fm
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Muonic Spectroscopy

• Experimental	precision	requires	separation	of	one	and	two	
photon	exchange

Muon	QED One	Photon Two	Photon

• ΔETPE is	the	contribution	from	the	Two	Photon	Exchange
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Muonic Scattering	Experiment	(MUSE)

• Experiment	at	Paul	Scherrer Institute	in	Switzerland

• e+/e- and	𝛍+ /𝛍- beams	scattering	off	a	proton	target
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MUSE
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Why	QED-NRQED?

• Effective	Field	Theories	describe	physics	within	a	certain	
energy	scale

• QED-NRQED	combines
– Quantum	Electrodynamics	(QED)
– Non-Relativistic	Quantum	Electrodynamics	(NRQED)

• Relativistic	particles	use	QED	

• Non-Relativistic	particles	use	NRQED
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• m=muon mass	~	100	MeV/c2

• M=proton	mass	~	1000	MeV/c2

• Muonic Hydrogen:	 p	~mcα	~	1	MeV/c
– Muon is	non-relativistic

• MUSE:	p	~	mc	~	100	MeV/c
– Muon is	relativistic:	Use	QED

– Proton	is	non-relativistic:	Use	NRQED
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Overview	of	QED

• QED	Lagrangian:

• Photon	Propagator:

• Fermion	Propagator:

• Vertex:
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Overview	of	NRQED

• To	Order	1/M2 [1]

• Schrödinger’s	Equation

• Spin	Orbit	Coupling

• Darwin	Term
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Overview	of	NRQED

• To	Order	1/M2 [1]

• cF is	the	magnetic	moment	~2.79[2]

• cD is	equivalent	to	the	proton	radius
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NRQED	Feynman	Rules[1]

• Coulomb	Photon	Propagator

• Space-like	Photon	Propagator

• NR	Fermion	Propagator

• Coulomb	Vertex
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NRQED	Feynman	Rules[1]

• Dipole	Vertex

• Fermi	Vertex

• Darwin	Vertex
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From	Wilson	Coefficients	to	the	Charge	Radius

• Wilson	Coefficients	related	to	Form	Factors[1][2]

• FF’s	describe	interactions	between	particles	without	going	into	
detail	about	the	interaction
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• Arise	from	matrix	element	of	electromagnetic	current

• Where

• Relation	between	form	factors	and	charge	radius[1]
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Properties	of	QED-NRQED

• 𝛌 IR	cut	off	and	Mp is	UV	cut	off

• No	Deep	Inelastic	Scattering	contribution

• Describes	only	Electromagnetic	interactions
– Strong	interaction	information	encoded	in	Wilson	Coefficients
– Pion	is	not	considered	a	dynamical	degree	of	freedom

Steven	Dye								Wayne	State	University 21



Why	Not	QED-QED?

• QED	makes	the	assumption	that	all	particles	are	fundamental	
particles	(point	like)

• Proton	is	a	composite	particle!
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Why	Not	NRQED-NRQED?

• NRQED	is	power	expanded	in	p/m	(or	v)

• At	relativistic	momentum	(p	~	m),	series	does	not	converge
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QED-NRQED	Scattering	of	One	Photon	
Exchange	to	power	m2/M2
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• Lepton-Proton	elastic	scattering

• At	power	m2/M2

• Z	=1	for	a	proton
• Ql is	the	lepton	charge	(±1)
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Compare	to	Rosenbluth Scattering	

• To	power	m2/M2

• Replace	WC’s	with	FF’s	to	reproduce	Rosenbluth scattering	
to	power	m2/M2 [1]
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QED-NRQED	Scattering	of	Two	Photon	
Exchange	at	Leading	Power
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QED-NRQED	Amplitude
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To	leading	power	m/M



Static	Potential	Amplitude
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Using	a	screened	coulomb	potential:



Comparing	Results

• Both	methods	give	the	same	result

QED-NRQED:

Static	Potential:

• Same	Amplitude

Steven	Dye								Wayne	State	University 30



Cross	Section

• Both	Amplitudes	result	in	the	same	cross	section

• Mott	Scattering	with	α	correction

• v=p/E
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Future	Work
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• Establish	a	direct	relation	between	μ-p	scattering	and	
muonic Hydrogen	
– TPE	contributes	to	b1 constant	in	nucleon-relativistic	lepton	
effective	lagrangian[1]

• Look	at	Two	Photon	Exchange	up	to	power		m2/M2	[2]

– Include	1/M	and	1/M2 power	vertices
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Summary

• Looked	at	One	Photon	Exchanges
– To	leading	power
– To	power	m/M
– To	power	m2/M2

• Looked	at	Two	Photon	Exchanges
– To	leading	power	
– To	power	m/M
– To	power	m2/M2

• Reproduced	known	results	with	QED-NRQED	Effective	Field	Theory

• Establish	a	direct	comparison	between	spectroscopy	and	scattering	
data
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END
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Extra	Slides
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Proton	Charge	Radius	Data
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Kinematics	used
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Wilson	Coefficients
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Where	rE is	the	charge	radius	
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Point	Particle	QED	Amplitude

• Taken	to	the	limit	of	Mè∞

• Same	result	as	QED-NRQED

Steven	Dye								Wayne	State	University 40



Differences	in	Scatterings

• Coulomb	Scattering:	NR	and	massless	lepton

• Mott	Scattering:	R	and	massless	lepton

• Rosenbluth Scattering:	R	and	massive	lepton[1]

• All	hit	an	infinitively	massive,	point	like	proton
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Electric	and	Magnetic	Form	Factor	Ratio
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